References

Amani, B.H.K., N’Guessan, A.E., Derroire, G., N’dja, J.K., Elogne, A.G.M., Traoré, K., Zo-Bi, I.C. & Hérault, B. (2021). The potential of secondary forests to restore biodiversity of the lost forests in semi-deciduous west africa. Biological Conservation, 259.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V. & Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8, 1991–2007. Retrieved from https://www.geosci-model-dev.net/8/1991/2015/
Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L. & Hubbell, S.P. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80–82.
Ferry, B., Morneau, F., Bontemps, J.-D., Blanc, L. & Freycon, V. (2010). Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. Journal of Ecology, 98, 106–116. Retrieved from http://doi.wiley.com/10.1111/j.1365-2745.2009.01604.x
Gompertz, B. (1825). On the nature of the function expressive of the law of humanmortality, and on a newmode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115, 513–583. Retrieved from https://www.tandfonline.com/doi/full/10.1080/14786445908642737
John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M., Hubbell, S.P., Valencia, R., Navarrete, H., Vallejo, M. & Foster, R.B. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 104, 864–9.
Keck, F., Rimet, F., Bouchez, A. & Franc, A. (2016). Phylosignal: An {{}r{}} package to measure, test, and explore the phylogenetic signal. Ecology and Evolution, 6, 2774–2780. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799788/
Nakagawa, S. & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142.
Schmitt, S., Hérault, B., Ducouret, É., Baranger, A., Tysklind, N., Heuertz, M., Marcon, É., Cazal, S.O. & Derroire, G. (2020). Topography consistently drives intra- and inter-specific leaf trait variation within tree species complexes in a neotropical forest. Oikos, 129, 1521–1530. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/oik.07488 https://onlinelibrary.wiley.com/doi/10.1111/oik.07488
Uriarte, M., Condit, R., Canham, C.D. & Hubbell, S.P. (2004). A spatially explicit model of sapling growth in a tropical forest: Does the identity of neighbours matter? Journal of Ecology, 92, 348–360. Retrieved from http://doi.wiley.com/10.1111/j.0022-0477.2004.00867.x