Chapter 7 Neutral and adaptive genetic variation effect on individual growth
We investigated effects of ecological and evolutionary processes on individual growth, using genetic species and kinship. The individual growth of individual \(i\) in population \(p\) between individual recruitment \(y_0\) and 2017, corresponds to the difference of DBH between the two years, and is defined with a hierarchical model in a lognormal distribution as follows:
\[DBH_{y=2017,p,i} - DBH_{y=y0,p,i} \sim logN(log[\sum_{y=y0}^{y=2017}AGR(DBH_{y,p,i})], \sigma^2_1)\]
where the difference of DBH \(DBH_{y=2017,p,i}-DBH_{y=y_0,p,i}\) is defined with a lognormal distribution located on the logarithm of the sum of annual growth rates \(AGR\) during the period \(y_0-2017\) and of shape \(\sigma_1\). The annual growth rate \(AGR\) for individual \(i\) in population \(p\) at year \(y\) with a diameter of \(DBH_{y,p,i}\) is defined following a Gompertz model (Gompertz 1825) already identified as the best model for growth-trajectories in Paracou (Hérault et al. 2011):
\[AGR(DBH_{y,p,i}) = Gmax_i.exp(-\frac12[\frac{log(\frac{DBH_{y,p,i}}{Doptp})}{Ksp}]^2)\]
where \(Gmax_i\) is the maximum growth potential (maximal AGR during individual life) for individual \(i\), \(Dopt_p\) is the population optimal diameter at which the individual reaches its maximum growth potential, and \(Ks_p\) is the population kurtosis defining the width of the bell-shaped growth-trajectory (see figure 1 in Hérault et al. 2011). To ease model inference, population optimal diameter \(Dopt_p\) and kurtosis \(Ks_p\) were defined as random population effects centered on a global \(Dopt\) and \(Ks\) with corresponding variances \(\sigma^2_{P,Dopt}\) and \(\sigma^2_{P,Ks}\). Individual \(i\) maximum growth potential \(Gmax_i\) was defined in a nested Animal model with a lognormal distribution:
\[Gmax_i \sim logN(log(Gmax_p.a_i), \sigma_{R,Gmax})\] \[a_i \sim MVlogN(log(1), \sigma_{G,Gmax}.K)\]
where \(Gmax_p\) is the mean \(Gmax\) of population \(p\),
\(a_i\) is the breeding value of individual \(i\),
and \(\sigma_{R,Gmax}\) is the shape of the lognormal distribution.
Individual breeding values \(a_i\) are defined following a multivariate lognormal law \(MVlogN\)
with a co-shape matrix defined as the product of the kinship matrix \(K\) and the genotypic variation \(\sigma_{G,Gmax}\).
To estimate variances on a normal-scale, we log-transformed population fixed effect, genetic additive values,
and calculated conditional and marginal \(R^2\) (Nakagawa & Schielzeth 2013).
We used Bayesian inference with No-U-Turn Sampler (NUTS, Hoffman & Gelman 2014) using stan
language (Carpenter et al. 2017).
7.1 Growth data
trees <- src_sqlite(file.path("data", "Paracou","trees", "Paracou.sqlite")) %>%
tbl("Paracou") %>%
filter(Genus == "Symphonia") %>%
mutate(DBH = CircCorr/pi) %>%
filter(!(CodeMeas %in% c(4))) %>%
collect()
trees <- read_tsv(file.path(path, "..", "variantCalling", "paracou",
"symcapture.all.biallelic.snp.filtered.nonmissing.paracou.fam"),
col_names = c("FID", "IID", "FIID", "MIID", "sex", "phenotype")) %>%
mutate(Ind = gsub(".g.vcf", "", IID)) %>%
mutate(X = gsub("P", "", Ind)) %>%
separate(X, c("Plot", "SubPlot", "TreeFieldNum"), convert = T) %>%
left_join(trees) %>%
left_join(read_tsv(file.path(path, "bayescenv", "paracou3pop.popmap"),
col_names = c("IID", "pop"))) %>%
left_join(read_tsv(file.path(path, "populations", "paracou.hybridmap")),
by = "Ind", suffix = c("", ".hybrid"))
trees <- trees %>%
group_by(Ind) %>%
mutate(Y0 = dplyr::first(CensusYear), DBH0 = dplyr::first(DBH),
DBHtoday = dplyr::last(DBH), N = n()) %>%
ungroup() %>%
dplyr::select(Ind, Xutm, Yutm, IID, pop, Y0, DBH0, DBHtoday, N) %>%
unique() %>%
mutate(DBHtoday = ifelse(DBHtoday == DBH0, DBHtoday + 0.1, DBHtoday))
write_tsv(trees, file = "save/Growth.tsv")
7.2 Simulated Growth and Animal Model
We used the following growth model with a lognormal distribution to estimate individual growth potential and associated genotypic variation:
\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \theta_{1,p,i}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\theta_{2,p}})}{\theta_{3,p}}]^2)), \sigma_1) \\ \theta_{1,p,i} \sim \mathcal {logN}(log(\theta_{1,p}.a_{1,i}), \sigma_2) \\ \theta_{2,p} \sim \mathcal {logN}(log(\theta_2),\sigma_3) \\ \theta_{3,p} \sim \mathcal {logN}(log(\theta_3),\sigma_4) \\ a_{1,i} \sim \mathcal{MVlogN}(log(1), \sigma_5.K) \tag{7.1} \end{equation}\]
We fitted the equivalent model with the following priors:
\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \hat{\theta_{1,p,i}}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\hat{\theta_{2,p}}})}{\hat{\theta_{3,p}}}]^2)), \sigma_1) \\ \hat{\theta_{1,p,i}} = e^{log(\theta_{1,p}.\hat{a_{1,i}}) + \sigma_2.\epsilon_{1,i}} \\ \hat{\theta_{2,p}} = e^{log(\theta_2) + \sigma_3.\epsilon_{2,p}} \\ \hat{\theta_{3,p}} = e^{log(\theta_3) + \sigma_4.\epsilon_{3,p}} \\ \hat{a_{1,i}} = e^{\sigma_5.A.\epsilon_{4,i}} \\ \epsilon_{1,i} \sim \mathcal{N}(0,1) \\ \epsilon_{2,p} \sim \mathcal{N}(0,1) \\ \epsilon_{3,p} \sim \mathcal{N}(0,1) \\ \epsilon_{4,i} \sim \mathcal{N}(0,1) \\ ~ \\ (\theta_{1,p}, \theta_2, \theta_3) \sim \mathcal{logN}^3(log(1),1) \\ (\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5) \sim \mathcal{N}^5_T(0,1) \\ ~ \\ V_P = Var(log(\mu_p)) \\ V_G=\sigma_5^2\\ V_R=\sigma_2^2 \tag{7.2} \end{equation}\]
Parameter | Estimate | Standard error | Expected | \(\hat R\) |
---|---|---|---|---|
thetap1[1] | 0.8266180 | 0.1121729 | 0.5300000 | 1.0008119 |
thetap1[2] | 0.4816256 | 0.0889950 | 0.5400000 | 1.0015447 |
thetap1[3] | 0.3413224 | 0.0629704 | 0.3600000 | 1.0009558 |
theta2 | 0.2596370 | 0.0764302 | 0.2500000 | 1.0004898 |
theta3 | 0.7276357 | 0.1440250 | 0.7000000 | 0.9996955 |
Vp | 0.1379774 | 0.0635966 | 0.0352066 | 1.0016146 |
Vg | 0.0280998 | 0.0758363 | 0.1350074 | 1.0016744 |
Vr | 0.5217135 | 0.1090083 | 0.4489000 | 1.0170006 |
7.3 Genetic variance
We used the following growth model with a lognormal distribution to estimate individual growth potential and associated genotypic variation:
\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \theta_{1,p,i}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\theta_{2,p}})}{\theta_{3,p}}]^2)), \sigma_1) \\ \theta_{1,p,i} \sim \mathcal {logN}(log(\theta_{1,p}.a_{1,i}), \sigma_2) \\ \theta_{2,p} \sim \mathcal {logN}(log(\theta_2),\sigma_3) \\ \theta_{3,p} \sim \mathcal {logN}(log(\theta_3),\sigma_4) \\ a_{1,i} \sim \mathcal{MVlogN}(log(1), \sigma_5.K) \tag{7.3} \end{equation}\]
We fitted the equivalent model with the following priors:
\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \hat{\theta_{1,p,i}}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\hat{\theta_{2,p}}})}{\hat{\theta_{3,p}}}]^2)), \sigma_1) \\ \hat{\theta_{1,p,i}} = e^{log(\theta_{1,p}.\hat{a_{1,i}}) + \sigma_2.\epsilon_{1,i}} \\ \hat{\theta_{2,p}} = e^{log(\theta_2) + \sigma_3.\epsilon_{2,p}} \\ \hat{\theta_{3,p}} = e^{log(\theta_3) + \sigma_4.\epsilon_{3,p}} \\ \hat{a_{1,i}} = e^{\sigma_5.A.\epsilon_{4,i}} \\ \epsilon_{1,i} \sim \mathcal{N}(0,1) \\ \epsilon_{2,p} \sim \mathcal{N}(0,1) \\ \epsilon_{3,p} \sim \mathcal{N}(0,1) \\ \epsilon_{4,i} \sim \mathcal{N}(0,1) \\ ~ \\ (\theta_{1,p}, \theta_2, \theta_3) \sim \mathcal{logN}^3(log(1),1) \\ (\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5) \sim \mathcal{N}^5_T(0,1) \\ ~ \\ V_P = Var(log(\mu_p)) \\ V_G=\sigma_5^2\\ V_R=\sigma_2^2 \tag{7.4} \end{equation}\]
Parameter | Estimate | Standard error | \(\hat R\) | \(N_{eff}\) |
---|---|---|---|---|
thetap1[1] | 0.5423337 | 0.0699702 | 1.002517 | 1993 |
thetap1[2] | 0.5596376 | 0.1084135 | 1.001838 | 2331 |
thetap1[3] | 0.3485849 | 0.0301761 | 1.002514 | 1218 |
theta2 | 0.2528277 | 0.0858377 | 1.005150 | 2249 |
theta3 | 0.6963378 | 0.1038580 | 1.006909 | 1345 |
sigma[1] | 0.1373708 | 0.0742090 | 1.356851 | 22 |
sigma[2] | 0.5075622 | 0.1714122 | 1.107800 | 61 |
sigma[3] | 0.2805989 | 0.2994495 | 1.000577 | 2627 |
sigma[4] | 0.1377079 | 0.2346745 | 1.002896 | 2934 |
sigma[5] | 0.4684783 | 0.1850532 | 1.068632 | 87 |
7.4 Confounding phenotypic and environmental variation
If the phenotypic variation is only plastic and confounded with the environmental variation, the genotypic variance associated to the phenotype while controlling for the environmental variation should be null (\(\sigma^2_{G|E}=0\)). Instead, we still observed a non null genotypic variation while controlling for the environmental variation (\(\frac{\sigma^2_{G|E}}{\sigma^2_P}=0.12\), Fig. 7.13).
We used the following growth model with a lognormal distribution to estimate individual growth potential and associated genotypic variation controlling for environmental variation (\(NCI\) and \(TWI\)) at the individual scale:
\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \theta_{1,p,i}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\theta_{2,p}})}{\theta_{3,p}}]^2)), \sigma_1) \\ \theta_{1,p,i} \sim \mathcal {logN}(log(\theta_{1,p}.a_{1,i}. \beta_1.TWI_i.\beta_2.NCI_i), \sigma_2) \\ \theta_{2,p} \sim \mathcal {logN}(log(\theta_2),\sigma_3) \\ \theta_{3,p} \sim \mathcal {logN}(log(\theta_3),\sigma_4) \\ a_{1,i} \sim \mathcal{MVlogN}(log(1), \sigma_5.K) \tag{7.5} \end{equation}\]
We fitted the equivalent model with following priors:
\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \hat{\theta_{1,p,i}}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\hat{\theta_{2,p}}})}{\hat{\theta_{3,p}}}]^2)), \sigma_1) \\ \hat{\theta_{1,p,i}} = e^{log(\theta_{1,p}.\hat{a_{1,i}}. \beta_1.TWI_i.\beta_2.NCI_i) + \sigma_2.\epsilon_{1,i}} \\ \hat{\theta_{2,p}} = e^{log(\theta_2) + \sigma_3.\epsilon_{2,p}} \\ \hat{\theta_{3,p}} = e^{log(\theta_3) + \sigma_4.\epsilon_{3,p}} \\ \hat{a_{1,i}} = e^{\sigma_5.A.\epsilon_{4,i}} \\ \epsilon_{1,i} \sim \mathcal{N}(0,1) \\ \epsilon_{2,p} \sim \mathcal{N}(0,1) \\ \epsilon_{3,p} \sim \mathcal{N}(0,1) \\ \epsilon_{4,i} \sim \mathcal{N}(0,1) \\ ~ \\ (\theta_{1,p}, \theta_2, \theta_3) \sim \mathcal{logN}^3(log(1),1) \\ (\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5) \sim \mathcal{N}^5_T(0,1) \\ ~ \\ V_P = Var(log(\mu_p)) \\ V_G=\sigma_5^2\\ V_{TWI} = Var(log(\beta_1.TWI_i)) \\ V_{NCI} = Var(log(\beta_2.NCI_i)) \\ V_R=\sigma_2^2 \tag{7.6} \end{equation}\]
Parameter | Estimate | Standard error | \(\hat R\) | \(N_{eff}\) |
---|---|---|---|---|
thetap1[1] | 0.6819703 | 0.1750196 | 1.0017710 | 3771 |
thetap1[2] | 0.4693647 | 0.1630881 | 1.0003561 | 3238 |
thetap1[3] | 0.7133448 | 0.1741461 | 1.0009126 | 3999 |
beta[1] | 1.0338461 | 0.4773498 | 1.0009493 | 5751 |
beta[2] | 1.0231845 | 0.4821474 | 0.9998852 | 6093 |
theta2 | 0.2212118 | 0.0872344 | 1.0031382 | 1564 |
theta3 | 0.6542952 | 0.1080025 | 1.0011451 | 2755 |
sigma[1] | 0.1302832 | 0.0953805 | 1.3708842 | 22 |
sigma[2] | 0.8841277 | 0.1185958 | 1.1145255 | 81 |
sigma[3] | 0.3078621 | 0.3262250 | 1.0020929 | 2855 |
sigma[4] | 0.1441136 | 0.2493211 | 1.0005756 | 4162 |
sigma[5] | 0.4157660 | 0.2270843 | 1.1430011 | 55 |
7.5 Manuscript figure
References
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. & Riddell, A. (2017). Stan : A Probabilistic Programming Language. Journal of Statistical Software, 76. Retrieved from http://www.jstatsoft.org/v76/i01/
Gompertz, B. (1825). On the nature of the function expressive of the law of humanmortality, and on a newmode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115, 513–583. Retrieved from https://www.tandfonline.com/doi/full/10.1080/14786445908642737
Hérault, B., Bachelot, B., Poorter, L., Rossi, V., Bongers, F., Chave, J., Paine, C.E.T., Wagner, F. & Baraloto, C. (2011). Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of Ecology, 99, 1431–1440.
Hoffman, M.D. & Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593–1623. Retrieved from http://arxiv.org/abs/1111.4246
Nakagawa, S. & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142.