TROLL simulations showed very little variations due to stochasticity in fluxes (however this is 10-years variations starting from a single spin-up). The highest variation is in Leaf Area Index (LAI, m2/m2), partly due to higher possible stochasticity in leaf shedding, but remains negligible. Oppositely, Growth Primary Productivity (GPP, kgC/m2/yr), evapotranspiration (ET, mm/day) and Soil Water Content (SWC, m3/m3) showed almost no-variations across simulations of monthly mean values.
Code
files <- list.files ("results/eval/" , pattern = "sumstats.txt" ,
recursive = T, full.names = T)
names (files) <- list.files ("results/eval/" , pattern = "sumstats.txt" ,
recursive = T, full.names = F)
period <- "month"
files %>%
lapply (vroom:: vroom) %>%
bind_rows (.id = "file" ) %>%
separate (file, "sim" , "/" ) %>%
separate (sim, c ("site" , "repetition" )) %>%
mutate (repetition = as.numeric (gsub ("R" , "" , repetition))) %>%
mutate (gpp = gpp* 10 ^ 2 * 365 / 10 ^ 3 ) %>%
select (site, repetition, iter, gpp) %>%
mutate (date = as_date (ifelse (site == "Paracou" ,
"2004/01/01" ,
"2002/01/01" ))) %>%
mutate (date = date + iter) %>%
group_by (site, repetition, date = floor_date (date, period)) %>%
summarise (gpp = mean (gpp)) %>%
group_by (site, date = floor_date (date, period)) %>%
summarise (l = min (gpp),
m = median (gpp),
h = max (gpp)) %>%
ggplot (aes (date, m)) +
geom_ribbon (aes (ymin = l, ymax = h), col = NA , alpha = 0.2 ) +
geom_line (col = "grey" ) +
geom_errorbar (aes (ymin = l, ymax = h)) +
facet_wrap (~ site, nrow = 2 , scales = "free" ) +
theme_bw () +
xlab ("" ) +
ylab (expression ("Growth Primary Productivity [" ~ kgC~ m^ {- 2 }~ yr^ {- 1 }~ "]" ))
Code
files <- list.files ("results/eval/" , pattern = "LAIdynamics.txt" ,
recursive = T, full.names = T)
names (files) <- list.files ("results/eval/" , pattern = "LAIdynamics.txt" ,
recursive = T, full.names = F)
period <- "month"
files %>%
lapply (vroom:: vroom) %>%
bind_rows (.id = "file" ) %>%
separate (file, "sim" , "/" ) %>%
separate (sim, c ("site" , "repetition" )) %>%
mutate (repetition = as.numeric (gsub ("R" , "" , repetition))) %>%
mutate (date = as_date (ifelse (site == "Paracou" ,
"2004/01/01" ,
"2002/01/01" ))) %>%
mutate (date = date + iter) %>%
group_by (site, repetition, date = floor_date (date, period)) %>%
summarise (LAI = mean (LAI)) %>%
group_by (site, date = floor_date (date, period)) %>%
summarise (l = min (LAI),
m = median (LAI),
h = max (LAI)) %>%
ggplot (aes (date, m)) +
geom_ribbon (aes (ymin = l, ymax = h), col = NA , alpha = 0.2 ) +
geom_line (col = "grey" ) +
geom_errorbar (aes (ymin = l, ymax = h)) +
facet_wrap (~ site, nrow = 2 , scales = "free" ) +
theme_bw () +
xlab ("" ) +
ylab (expression ("Leaf Area Index [" ~ m^ 2 ~ m^ {- 2 }~ "]" ))
Code
files <- list.files ("results/eval/" , pattern = "water_balance.txt" ,
recursive = T, full.names = T)
names (files) <- list.files ("results/eval/" , pattern = "water_balance.txt" ,
recursive = T, full.names = F)
period <- "month"
files %>%
lapply (vroom:: vroom) %>%
bind_rows (.id = "file" ) %>%
separate (file, "sim" , "/" ) %>%
separate (sim, c ("site" , "repetition" )) %>%
mutate (repetition = as.numeric (gsub ("R" , "" , repetition))) %>%
mutate (date = as_date (ifelse (site == "Paracou" ,
"2004/01/01" ,
"2002/01/01" ))) %>%
mutate (date = date + iter) %>%
mutate (et = (transpitation_0 + transpitation_1 + transpitation_2 +
transpitation_3 + transpitation_4 + evaporation)* 1000 ) %>%
group_by (site, repetition, date = floor_date (date, period)) %>%
summarise (et = mean (et)) %>%
group_by (site, date = floor_date (date, period)) %>%
summarise (l = min (et),
m = median (et),
h = max (et)) %>%
ggplot (aes (date, m)) +
geom_ribbon (aes (ymin = l, ymax = h), col = NA , alpha = 0.2 ) +
geom_line (col = "grey" ) +
geom_errorbar (aes (ymin = l, ymax = h)) +
facet_wrap (~ site, nrow = 2 , scales = "free" ) +
theme_bw () +
xlab ("" ) +
ylab (expression ("Evapotranspiration [" ~ mm~ day^ {- 1 }~ "]" ))
Code
files <- list.files ("results/eval/" , pattern = "water_balance.txt" ,
recursive = T, full.names = T)
names (files) <- list.files ("results/eval/" , pattern = "water_balance.txt" ,
recursive = T, full.names = F)
period <- "month"
files %>%
lapply (vroom:: vroom) %>%
bind_rows (.id = "file" ) %>%
separate (file, "sim" , "/" ) %>%
separate (sim, c ("site" , "repetition" )) %>%
mutate (repetition = as.numeric (gsub ("R" , "" , repetition))) %>%
mutate (date = as_date (ifelse (site == "Paracou" ,
"2004/01/01" ,
"2002/01/01" ))) %>%
mutate (date = date + iter) %>%
group_by (site, repetition, date = floor_date (date, period)) %>%
summarise (SWC_0 = mean (SWC_0)) %>%
group_by (site, date = floor_date (date, period)) %>%
summarise (l = min (SWC_0),
m = median (SWC_0),
h = max (SWC_0)) %>%
ggplot (aes (date, m)) +
geom_ribbon (aes (ymin = l, ymax = h), col = NA , alpha = 0.2 ) +
geom_line (col = "grey" ) +
geom_errorbar (aes (ymin = l, ymax = h)) +
facet_wrap (~ site, nrow = 2 , scales = "free" ) +
theme_bw () +
xlab ("" ) +
ylab (expression ("Soil Water Content [" ~ m^ {3 }~ m^ {- 3 }~ "]" ))